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Development of predictive techniques, with regard to cell

behavior, under various operating conditions is needed to

improve cell performance, increase energy density, reduce

manufacturing cost, and to broaden utilization of various

fuels. Such technology would be especially beneficial for

the solid oxide fuel cell (SOFC) at its early demonstration

stage.

Three designs of SOFC cell/stack configurations are now

available and they are Westinghouse tubular, Argonne

National Laboratory (ANL) monolithic, and Ztek planar FC

models. A comparison among these designs in the previously

stated areas is needed. Basically, the differences among

these configurations are shape of cell, channel geometry for

reactant flow, and size/thickness of cell components. These

designs were compromised with manufacturability, which is

still the most difficult task aspect of the SOFC

development. Due to this difficulty, there are limitations

on the size of monolithic and planar cells and on the weight

(and cost) of tubular cell. But the manufacturability is

not the only factor that limits the size of SOFC. As soon

as the cell is put on operation, the temperature and the

current density (CD) distributions on the plate will

determine the success of the performance in the following

ways: (I) hot spot temperatures exceeding the sintering,

coating, or E(C)VD temperature will cause material problems,

(2) severe non-uniform temperature distributions will result

in cracking due to thermal stresses, and (3) non-uniform CD

distribution will increase the possibility of reactant

depletion at exit, especially at high utilization ratios.

This paper describes the development of computer models to

calculate the temperature, CD, and reactant distributions in

the tubular and monolithic SOFCs. Results indicate that

problems of non-uniform heat generation and fuel gas

depletion in the tubular cell module, and of size

limitations in the monolithic (MOD 0) design may be

encountered during FC operation.

V-I Characteristics

The SOFC semi-empirical V-I characteristics was modeled with

respect to cell components (thickness) and operating

conditions (temperature, pressure, inlet fuel gas



compositions, and fuel and oxidant utilization ratios).

Tubular Cell

For the Westinghouse tubular SOFC, a two-dimensional CD

profile (circumferential and axial) was generated by

assuming an isothermal condition (i000 °C). Recently

reported performances of tubular SOFC using DOE specified

fuel (67% H2, 22% CO, ii % H20 at 85 % fuel utilization)

and air [I] were applied in this study. First, an analytic
model (Figure i) was solved and the solutions were used to

calculate the circumferential CD distribution around the

tubular SOFC using specific fuel and oxidant gas flow

rates. Because of symmetry, only one half of a cell was

modeled. Secondly, a finite difference model was used to

calculate the fuel and oxidant gas flow rates along the axis

of the tubular SOFC. Reforming and water shift reactions

were considered at equilibrium at the operating temperature

of 1000 °C. Rated operating conditions and cell

dimensions of the Westinghouse 5 kW module were applied.

Figure 2 shows the circumferential and axial CD profiles.

It is noted that there is non-uniformity of CD along the

axis and around the circumference of the tubular cell. For

a 0.275 A/cm 2 (average) operation, the CD ranges from

0.652 to 0.164 A/cm 2. The peak CD occurs at circumference

equal to 1.85 cm in Figure i, where the current flows

radially out of the cell, and where the fuel and oxidant

gases enter the cell axially. The lowest CD occurs at the

opposite end of the cell. Figure 2 also shows that in an

operating cell, the peak CD, as well as the largest heat
generation, is near the interconnection. This will worsen

the critical stress problem since the thermal expansion will

not be compatible between the interconnection and other cell

components.

Another important issue pertains to the probability of fuel

gas depletion in the Westinghouse 5 kW module. The

non-uniform fuel gas flow distribution in the passages

(main, side, and corner) caused by the equal pressure

gradient of the flow, is compared with the amount of fuel

needed to achieve a parallel connection (e.g., the current

for three cells in parallel is equal to 80 A). Documented

performances from specimen testing [i] were adapted as the

basis. Among these reported data, the performance is a

function of the cell itself and the testing time. The

probabilities of total fuel gas depletion (at operating time

equal to 200 hours) around the edge cells for two types of

flow passages and two to six cells in parallel are shown in

Figure 3. It shows that in a design with three cells in

parallel there is a 7% probability that fuel gas will be

depleted at the exit of edge cells (corner cells and side

cells in Type I & II flow distributions, respectively). In

addition, a shorted cell (by assuming voltage of



arbitrarily chosen cell equal to 0) in the operation will

always result in fuel gas starvation for the remaining,
i.e., unshorted cells.

These results strongly imply that the design of more uniform

fuel gas passages is necessary, which can be achieved by

increasing the thickness of Ni felt or by redesigning the

fuel gas intake plenum.

Monolithic Cell

Monolithic solid oxide fuel cells are currently being

developed at Argonne National Laboratory. For many

applications, operating conditions such as total pressure,

average cell temperature and current density, as well as
inlet reactant gas temperatures and compositions are fixed

or are predetermined. A two dimensional computer model has
been implemented to predict the effects of fuel utilization

ratios (FUR), oxidant utilization ratios (OUR), and cell

dimensions upon the temperature and current density

distributions within cross-flow arrays of the MOD 0 design,

subject to a specific set of the above mentioned operating
conditions. Results from the model were used to determine

limits on cell sizes and on reactant gas utilizations by
evaluating the three performance indicators outlined

earlier. In the subsequent analyses, the following

operational parameters were maintained : pressure = 1 atm;

average array temperature = i000 °C; average current
density = 500 mA/cm2; inlet molar fuel gas composition :

97% H2, 3% H20; inlet molar oxidant gas composition :

21% 02, 79% N2; and each inlet gas temperature
= 800 °C.

All V-I relationships for the monolithic fuel cells were

assumed to behave linearly within the range of interest.

Some representative V-I curves are displayed in Figure 4,

where the best case accounts only for ohmic resistance and

the estimated case includes slow polarization effects. Both
the best case and the estimated case are more favorable than

the experimental V-I curve, however, it is reasonable to

expect that the experimental relationship has been improved
since the December 1985 status [2].

Figure 5 shows the relationship between FUR and OUR that

must exist in order to satisfy the specified operating
conditions. While Figure 5 represents the case for a 10 cm

x i0 cm array, the shape of the curve is similar for other

cell dimensions as well. It is evident from the figure that
lower limits on both FUR and OUR will be encountered. The

effect of FUR on overall operating efficiency is also
depicted in Figure 5 and it is seen that the maximum

efficiency is obtained at a relatively small FUR value, near
FUR = 0.2 .



A typical temperature distribution is shown in Figure 6

where the peak temperature is reached at the extreme corner

of the array, since reactant gas depletion is at the maximum

there. The minimum array temperature occurs at the opposite

corner. In all cases, the maximum temperature is located

along the edge of the array where oxidant gas departs,

however, as FUR is increased, the hot spot location moves

closer to the fuel gas inlet. One of the performance

criteria requires that the peak cell temperature be lower

than the sintering temperature used in the manufacturing

process, which is approximately 1600 °K. Results

obtained using the best possible V-I curve indicate that the

array sizes could exceed 20 cm x 20 cm and still satisfy the

hot spot requirement. For cases where the estimated V-I

curve was applied, however, the peak temperature rose above

1600 °K for cell dimensions as small as 5 cm x 5 cm, as

seen in the diagram.

Since the location of the minimum array temperature is

invariant, both the magnitude and the relative lo_ation of

the maximum temperature must be considered when assessing

thermal stresses. At large FUR values, the peak temperature

is in close proximity to the minimum temperature and large

thermal gradients will be developed, the severity of which

depends on the materials used.

Results from the computer model show that array dimensions
for a cross-flow monolithic fuel cell can be restricted as a

result of non-uniform temperature distributions.

Improvements in the V-I curve will alleviate much of this

problem. Also, a range of allowable reactant utilization

ratios will be established when a set of operational

parameters are specified.
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